Physics Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks /Days)
NYS Key Idea 3: Critical thinking skills are used in the solution of mathematical problems. M3.1 Apply algebraic and geometric concepts and skills to the solution of problems. • explain the physical relevance of properties of a graphical representation of real world data, e.g., slope, intercepts, area under the curve	Unit 1: Mathematical Tools 1. Perform calculations with SI units and scientific notation 2. Understand the need for accuracy and precisions when making measurements and reporting data 3. Display and evaluate data using graphs as well as linearizing data and create mathematical models 4. Dimensional analysis	1. Perform calculations with SI units and scientific notation 2. Understand the need for accuracy and precisions when making measurements and reporting data 3. Display and evaluate data using graphs as well as linearizing data and create mathematical models 4. Dimensional analysis 5. Significant figures 6. Review of algebra/trig(SOH CAH TOA)	School Issued Chromebooks Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Labs: Life of Pi Summative: Test: Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: Math Pre-test Bellringers Homework 	First week of September

Key Idea 2:	5. Significant		
Models are	figures		
simplified	6. Review of		
representations of	algebra/trig(SOH		
objects,	CAH TOA)		
structures, or			
systems used in			
analysis,			
explanation,			
interpretation,			
or design.			
2.2 Collect			
information about			
the behavior of a			
system and			
use modeling tools			
to			
represent the			
operation of			
the system.			
• use observations			
of the			
behavior of a			
system to			
develop a model			
2.3 Find and use			
mathematical			
models that			
behave in the			
same manner			
as the			

processes under			
investigation.			
 represent the 			
behavior of			
real-world			
systems, using			
physical and			
mathematical			
Models			
Key Idea 1:			
Engineering design			
is an			
iterative process			
involving			
modeling and			
optimization			
(finding			
the best solution			
within given			
constraints) which			
is used to			
develop			
technological			
solutions to			
problems within			
given constraints.			
(Note: The			
design process			
could apply to			
activities from			
simple			
investigations to			

graphs iii. determine the	graphs, and motion maps and		
acceleration due to gravity near	interpret motion graphs		
the	using slope and		
surface of Earth iv. determine the	area.		
resultant of	-In the y direction		
two or more	1. Calculate free		
vectors graphically or	fall acceleration		
algebraically			
performance			
indicators:			
5.1a Measured			
quantities can be classified as			
either vector			
or scalar.			
5.1b A vector may			
be			
resolved into perpendicular			
components.*			
5.1c The resultant of two or			
more vectors,			
acting at any			
angle, is determined by			

vector addition. 5.1d An object in linear motion may travel with a constant velocity* or with acceleration*. (Note: Testing of acceleration will be limited to					
cases in which acceleration is constant. 5.1 iii. determine the					
acceleration due to gravity near the surface of Earth					
NYS 5.1 vii. sketch the theoretical path of a projectile Performance indicators: 5.1e An object in	Unit 3: Projectile Motion-2D motion 1. Describe and calculate projectile motion 2. Predict the pathway of a projectile	SWBAT: sketch the theoretical path of a projectile Use equations to analyze projectiles	School Issued Chromebook Teacher generated google slides notes Calculator	Labs: • Shoot For Your Grade • Rocket Science Summative: • Test:Created using previous years	Mid to Late October

free fall accelerates due to the force of gravity.* Friction and other forces cause the actual motion of a falling object to deviate from its theoretical motion. (Note: Initial velocities of objects in free fall may be in any direction.)	 3. Determine height and range of projectile 4. Observe and show how horizontal and vertical velocities are independent of each other 	both launched horizontally and at an angle Explain the optimal angle to launch a projectile that will result in the greatest horizontal and vertical distances	School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	regents questions taken from problem attic/castle learning • Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: • Bellringers • Homework	
 5.1f The path of a projectile is the result of the simultaneous effect of the horizontal and vertical components of its motion; these components act independently. 5.1g A projectile's time of flight is dependent 					

upon the vertical component of its motion.					
NYS 5.1 iv. determine the resultant of two or more vectors graphically or algebraically 5.1vi. resolve a vector into perpendicular components both graphically and algebraically viii. use vector diagrams to Analyze mechanical systems (equilibrium and nonequilibrium) Performance Indicators: 5.1a Measured quantities can be classified as either vector or scalar.	Unit 4: DYNAMICS AND STATICS Vectors 1. What is the difference between vector and scalar 2. Graphical vector representation 3. Graphical vector addition 4. Mathematical vector addition Forces 1. Free body diagrams: define and show forces acting on an object 2. Determine the normal force on the object 3. Recognize and calculate static and kinetic friction	HS-PS2-1. Analyze data to support the claim that Newton's Second Law of Motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • Atwood Lab • Foot Friction • Weight v. Mass Summative: • Test:Created using previous years regents questions taken from problem attic/castle learning • Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: • Bellringers • Homework	November

5.1b A vector may be resolved into perpendicular components.*	4. Resolve forces into x and y components with forces on an incline plane		
5.1c The resultant of two or more vectors, acting at any angle, is determined by vector addition			
5.1i According to Newton's First Law, the inertia of an object is directly proportional to its mass. An object remains at rest or moves with constant velocity, unless acted upon by an unbalanced force			
5.1k According to			

Newton's Second Law, an unbalanced force causes a mass to accelerate*. 5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a profractor Performance indicators:		 		
Second Law, an unbalanced force causes a mass to accelerate*. 5.1 q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor	Newton's			
unbalanced force causes a mass to accelerate*. image: causes a mass to accelerate*. 5.1q According to Newton's Third Law, forces occur in acconvreation acconvector acconv				
force causes a mass to accelerate*. 5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
mass to accelerate*.Image: second exerts a force on a second, the second exerts a force on a force on the first that is equal in magnitude and opposite in direction.Image: second exerts a force on the first that is equal in magnitude and opposite in direction.Image: second exerts a force on the first that is equal in magnitude and opposite in direction.Image: second exerts a force on the first that is equal in magnitude and opposite in direction.Image: second exerts a force on the first that is equal in that is equal in direction.Image: second exerts a force on the first that is equal in that is equal in that is equal in direction.Image: second exerts a force on the first that is equal in that is equal in that is equal in direction.Image: second exerts a force on the first that is equal in that is equa				
accelerate*. 5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force diagrams using a ruler and a protractor Performance				
Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force on a second he second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force fo	accelerate*.			
Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force on lambda				
Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force force on the second exerts a force on the first that is equal in magnitude and opposite in direction.				
occur in action/reaction pairs. When one one object exerts a force on a second, the second exerts a force on the first force on the first that is equal in magnitude and opposite in diagrams using a ruler and a protractor Performance e				
action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force diagrams using a ruler and a protractor Performance				
pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance	action/reaction			
object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force force diagrams using a ruler and a protractor Performance	pairs. When			
force on a second, the second exerts a second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force on that is a scaled force force force force on the first force force force on the first force force diagrams using a force force ruler and a protractor performance	one			
force on a second, the second exerts a second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force force on that is a scaled force force force force on the first force force force on the first force force diagrams using a force force ruler and a protractor performance	object exerts a			
second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance	second, the			
force on the first that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
that is equal in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
in magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
magnitude and opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
opposite in direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
direction. 5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
5.1 v. draw scaled force diagrams using a ruler and a protractor Performance				
force Image: Constraint of the second se				
force Image: Constraint of the second se	5 1 v draw scaled			
diagrams using a ruler and a<				
ruler and a protractor Performance				
protractor Performance				
Performance				
	indicators:			

 5.1j When the net force on a system is zero, the system is in equilibrium. 5.1o Kinetic friction* is a force that opposes motion. 					
NYS 5.1n Centripetal force* is the net force which produces centripetal acceleration.* In uniform circular motion, the centripetal force is perpendicular to the tangential velocity. 5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can be attractive or repulsive.	Unit 5: Uniform Circular Motion & Universal Law of Gravitation 1. Use the masses and distances between objects to calculate the gravitationa I force 2. Understand and calculate centripetal force of a motion in circular	HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology	Labs: • The Circle of Life Summative: • Test:Created using previous years regents questions taken from problem attic/castle learning • Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: • Bellringers • Homework	Late November/Earl y December

5.1u The inverse square law applies to electrical* and gravitational* fields produced by point sources.	motion		Castle Learning		
NYS 5.1p The impulse* imparted to an object causes a change in its momentum*. 5.1q According to Newton's Third Law, forces occur in action/reaction pairs. When one object exerts a force on a second, the second exerts a force on the first that is equal in magnitude and opposite in direction. 5.1r Momentum is conserved in a closed system.* (Note: Testing will	Unit 6: Momentum & Impulse 1. Students will be able to understand Momentum and Its Conservation according to Newton's 3rd law 2. Describe Momentum & impulse and apply them to the interactions of objects 3. Elastic versus inelastic collisions	HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	Labs: • The Explosion Lab • Impulse Lab Summative: • Test:Created using previous years regents questions taken from problem attic/castle learning • Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: • Bellringers • Homework	December

be limited to momentum in one dimension.)					
NYS Key Idea 4: Energy exists in many forms, and when these forms change energy is conserved. 4.1 Observe and describe transmission of various forms of energy. i. describe and explain the exchange among potential energy, kinetic energy, and internal energy for simple mechanical systems, such as a pendulum, a roller coaster, a spring, a freely falling object	Unit 7: Energy 1. Differentiating between potential and kinetic energy 2. Deriving KE and PE formulas graphically 3. Calculating the PE and KE at various points~ Determine how energy is used to do work 4. Explain that the total amount of energy in a closed system never changes 5. Energy form changes and conservation on energy 6. Work energy theorem 7. Calculating work and power 8. Relating power	HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Labs: Hooke's Law Pendulum Dropper Popper Who is the Most Powerful? Summative: Test:Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Rube Goldberg Project: Students will design and build a rube goldberg machine outside of the classroom Formative: Bellringers Homework 	January

		1		
 v. observe and explain energy conversions in real -world situations vi. recognize and describe conversions among different forms of energy in real or hypothetical devices such as a motor, a generator, a photocell, a battery 4.1a All energy transfers are governed by the law of 	to energy 9. Elastic potential energy calculation	HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy		
transfers are governed by the				
4.1b Energy may be converted among mechanical, electromagnetic, nuclear, and thermal forms.				

4.1c Potential energy is the energy an object possesses by virtue of its position or condition. Types			
of potential energy include gravitational* and elastic*.			
4.1d Kinetic energy* is the energy an object possesses by virtue of its motion.			
4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies			
(mechanical energy) is constant.* 4.1f In a nonideal			
mechanical system, as mechanical energy			

decreases there is a corresponding increase in other energies such as internal energy.* 4.1g When work* is done on or by a system, there is a change in the total energy* of the system. 4.1h Work done against friction results in an increase in the internal energy of the system. 4.1i Power* is the time-rate at which work is done or energy is expended.					
NYS 4.1j Energy may	Unit 8: Electrostatics	HS-PS2-4. Use mathematical	School Issued Chromebook	Labs: • Static Electricity	Early February

be stored in electric* or magnetic fields. This energy may be transferred through conductors or space and may be converted to other forms of energy. 4.1k Moving electric charges produce magnetic fields. The relative motion between a conductor and a magnetic field may produce a potential difference in the conductor.	 The difference between static and standard electricity Measuring static electricity Coulomb's Law Conservation on charge Drawing electrical fields through graphical and mathematical representation Drawing magnetic field lines Electric Potential energy 	representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects	Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Shocking Pie Pan Summative: Test:Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: Bellringers Homework 	
NYS 4.1 viii. measure current and voltage in a circuit ix. use	Unit 9: Electric Circuits 1.Drawing and understand the difference between	HS-PS3-6.Analyze data to support the claim that Ohm's Law describes the mathematical relationship among	School Issued Chromebook Teacher generated google slides notes	 Labs: Building Series Circuits Building Parallel Circuits 	Mid to Late February

		the notantial	Calquilator	Summetives	
measurements to determine the	parallel and series circuits	the potential difference, current,	Calculator	 Summative: Test:Created using 	
resistance of a	2. Understanding	and resistance of an	School Provided Lab	 Test:Created using previous years 	
circuit element	and calculating	electric circuit.	equipment	regents questions	
	voltage, current		cquipment	taken from problem	
4.1 x. interpret	and resistance of		Lab Manual Created	attic/castle learning	
graphs of	both		by Teacher	Quizzes:Created	
voltage versus	parallel and series		by reacher	using previous	
current	circuits		Physics Reference	years regents	
	3. Ohm's Law		Table	questions taken	
4.1 xi. measure	4. Understanding			from problem	
and compare	complex circuits		Textbook: Physics	attic/castle learning	
the resistance of	5. Role of		Principles & Problems	5	
conductors	capacitors within a			Formative:	
of various lengths	circuit		Schoology	Bellringers	
and	6. Understanding			Homework	
cross-sectional	measurement		Castle Learning		
areas	devices				
	 Ammeter 				
4.1 xii. construct	 Voltmeter 				
simple series	 Ohmmeter 				
and parallel circuits	 Multimeter 				
4.1 xiii. draw and					
interpret					
circuit diagrams					
which					
include voltmeters					
and					
ammeters					
4.1 xiv. predict the					
behavior					

of lightbulbs in			
series and			
parallel circuits Performance			
indicators			
indicators			
4.11 All materials			
display a			
range of			
conductivity. At			
constant			
temperature,			
common			
metallic conductors			
obey			
Ohm's Law*.			
4.1m The factors			
affecting			
resistance in a			
conductor are			
length,			
cross-sectional			
area,			
temperature, and			
resistivity.*			
4.1n A circuit is a			
closed path			
in which a current* can exist.			
(Note: Use			
conventional			

current.) 4.1o Circuit components may be connected in series* or in parallel*. Schematic diagrams are used to represent circuits and circuit elements. 4.1p Electrical power* and energy* can be determined for electric circuits.					
NYS 4.1 xv. map the magnetic field of a permanent magnet, indicating the direction of the field between the N (north-	Unit 10: Magnetism 1. Relating magnetism and electricity 2. Permanent vs. temporary 3. Drawing magnetic fields for bar	HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment	Labs: • Mapping Magnetic Fields • Building an Electromagnet Summative: • Test:Created using previous years regents questions taken from problem	Early March

	Simple motion	mathematical	Chromebook		Mid April
4.3 Students can	Simple motion		CHIOMEDOOK	Wave Characteristic	Mid April
	1. Identify the conditions of	representations to	Topphar gaparated		
explain		support a claim	Teacher generated	Slinky Lab	
variations in	simple harmonic	regarding	google slides notes	Snell's Law Lab	
wavelength and	motion	relationships among	Ostavilatan	 Speed of Sound 	
frequency in terms	2. Explain how	the period,	Calculator	Lab	
of the source of the	force, velocity	frequency,		Standing Waves	
vibrations that	and acceleration	wavelength, and	School Provided Lab	Summative:	
produce them,	change as an	speed of waves	equipment	 Test:Created using 	
e.g., molecules,	object vibrates	traveling and		previous years	
electrons,	3. Identify	transferring energy	Lab Manual Created	regents questions	
and nuclear	Amplitude	(amplitude,	by Teacher	taken from problem	
particles	4. Recognize the	frequency) in		attic/castle learning	
	relationship	various media.	Physics Reference	 Quizzes:Created 	
4.3a An oscillating	between period		Table	using previous	
system	and	HS-PS4-2. Evaluate		years regents	
produces waves.	frequency	questions about the	Textbook: Physics	questions taken	
The nature	5. Calculate the	advantages of using	Principles & Problems	from problem	
of the system	period and	a digital		attic/castle learning	
determines the	frequency of an	transmission and	Schoology		
type of wave	object in SHM	storage of		Formative:	
produced.	6. Calculate wave	information	Castle Learning	Bellringers	
	speed,			Homework	
4.3b Waves carry	frequency, and	HS-PS4-4. Evaluate			
energy and	wavelength	the validity and			
information without	7. Identify nodes	reliability of claims in			
transferring mass.	and anodes of	published materials			
This energy	standing and	of the effects that			
may be carried by	longitudinal	different frequencies			
pulses or	waves	of electromagnetic			
periodic waves.	• Wave	radiation have when			
	Interactions	absorbed by matter.			
4.3c The model of	1. Apply the				

a wavesuperpositionHS-PS4-6. Useincorporates theprinciple.mathematicalcharacteristics of2. Differentiatemodels to determineamplitude,betweenrelationships amongwavelength,*constructive andthe size and locationfrequency*,destructiveof images, size andperiod*, waveinterferencelocation of objects,speed*, and3. Predict when aand focal lengths ofphase.reflected wave willlenses and mirrorsbe inverted4.3 Mechanical4. Predict whetherwavesspecific travelingwaves will producemediuma standingstandingthrough which towavetravel.5. Identify nodesand antinodes ofand antinodes of4.3e Waves arestanding wavescategorized6. How mediums	
characteristics of amplitude,2. Differentiate betweenmodels to determine relationships among the size and location of images, size and location of objects, and focal lengths of lenses and mirrorswavelength,* requency*, period*, wave speed*, and phase.constructive and the size and location of images, size and location of objects, and focal lengths of lenses and mirrors4.3d Mechanical waves require a material medium through which to travel.4. Predict whether waves specific traveling material material material material material specific traveling through which to travel.5. Identify nodes and antinodes of standing waves4.3e Waves arestanding waves	
amplitude, wavelength,* frequency*, period*, wave speed*, and phase.between constructive and destructive interference location of objects, and focal lengths of lenses and mirrorsrelationships among the size and location of images, size and location of objects, and focal lengths of lenses and mirrors4.3d Mechanical waves4. Predict whether specific traveling require a material medium through which to travel.4. Predict whether standing through which to standing waves5. Identify nodes and antinodes of standing waves4.3e Waves are	
wavelength,* frequency*, period*, wave speed*, and phase.constructive and destructive interference interference be invertedthe size and location of images, size and location of objects, and focal lengths of lenses and mirrors4.3d Mechanical waves require a material through which to travel.4. Predict whether waves specific traveling through which to travel.4. Dredict whether standing waves4.3e Waves are5. Identify nodes and antinodes of4. Standing waves	
frequency*, period*, wave speed*, and phase.destructive interference and focal lengths of lenses and mirrors4.3d Mechanical waves4. Predict whether specific traveling require a material through which to travel.of images, size and location of objects, and focal lengths of lenses and mirrors4.3e Waves arestanding waves	
period*, wave speed*, and phase.interference 3. Predict when a reflected wave will be invertedlocation of objects, and focal lengths of lenses and mirrors4.3d Mechanical waves4. Predict whether specific traveling require a material medium through which to travel.location of objects, and focal lengths of lenses and mirrors4.3e Waves arestanding waves	
speed*, and phase.3. Predict when a reflected wave will be invertedand focal lengths of lenses and mirrors4.3d Mechanical waves4. Predict whether specific traveling require a material medium through which to travel.a standing wave standing waves4.3e Waves arestanding waves	
phase.reflected wave will be invertedlenses and mirrors4.3d Mechanical waves4. Predict whether specific traveling require a material medium through which to travel.lenses and mirrors4.3e Waves arestanding waves	
be inverted4.3d Mechanical4. Predict whetherwavesspecific travelingrequire a materialwaves will producemediuma standingthrough which towavetravel.5. Identify nodesand antinodes of4.3e Waves arestanding waves	
4.3d Mechanical waves4. Predict whether specific traveling waves will produce a standingrequire a material mediumwaves will produce a standingthrough which to travel.wave5. Identify nodes and antinodes of standing waves4.3e Waves arestanding waves	
wavesspecific travelingrequire a materialwaves will producemediuma standingthrough which towavetravel.5. Identify nodesand antinodes of4.3e Waves arestanding waves	
require a material mediumwaves will produce a standingthrough which to travel.wave5. Identify nodes and antinodes of4.3e Waves arestanding waves	
mediuma standingthrough which towavetravel.5. Identify nodesand antinodes of4.3e Waves arestanding waves	
through which to travel. wave 5. Identify nodes and antinodes of and antinodes of 4.3e Waves are standing waves	
travel. 5. Identify nodes and antinodes of 4.3e Waves are standing waves	
4.3e Waves are and antinodes of standing waves	
4.3e Waves are standing waves	
categorized 6 How mediums	
by the direction in effect wave	
which patterns	
particles in a 7. Waves at	
medium vibrate boundaries:	
about an reflection,	
equilibrium position refraction and	
relative to the absorption	
direction of	
propagation of the Sound Waves	
wave, 1. Explain how	
such sound waves are	
as transverse and produces	
longitudinal 2. Relate	
waves. frequency to pitch	

			1
	3. Compare the		
4.3f Resonance	speed of sound in		
occurs	various media		
when energy is	4. Explain the		
transferred to	Doppler effect and		
a system at its	shift		
natural	5. Explain		
frequency.	resonance		
	6. Explain sonic		
4.3g	booms		
Electromagnetic	7. Harmonics		
radiation exhibits			
wave	Electromagnetic		
characteristics.	Waves		
Electromagnetic	8. Differentiate		
waves	between		
can propagate	electromagnetic		
through a vacuum	waves		
	o Radio,		
	microwaves,		
	infrared,		
	visible, UV, x-rays,		
	gamma and		
	cosmetic waves		
	Light and		
4.3 Explain	Reflection		
variations in	1. Characteristics		
	-		
	÷		
vibrations	spectrum		
wavelength and frequency in terms of the source of the vibrations	of Light o Identify the components of the electromagnetic spectrum		

	Г Г Г Г		1
that produce them,	o Calculate the		
e.g.,	frequency or		
molecules,	wavelength of		
electrons, and	electromagnetic		
nuclear particles	radiation		
4.3i When a wave	2. Color and		
moves	Polarization		
from one medium	3. Refraction		
into	o Critical angle		
another, the wave	o Solve problem's		
may	using Snell's Law		
refract due to a	4. Reflection of		
change in speed.	light		
The angle of	o Law of reflection		
refraction	5. Total Internal		
(measured with	Reflection		
respect to the	6. Dispersion		
normal)	7. Diffraction		
depends	o Huygen's		
on the angle of	principle		
incidence and	o Double Slit		
the properties of	Diffraction		
the media	8. Electromagnetic		
(indices of	spectrum		
refraction).*			
,			
4.3j The absolute			
index of			
refraction is			
inversely			
proportional to the			
speed of a			
wave.*			

4.3k All frequencies of electromagnetic radiation travel at the same speed in a vacuum.*					
5.3 Compare energy relationships within an atom's nucleus to those outside the nucleus. i. interpret energy-level diagrams ii. correlate spectral lines with an energy-level diagram can compare energy relationships within an atom's nucleus to those outside the	Unit 12: Modern & Nuclear 1. Quantization of Energy 2. Models of the Atom 3. Quantum Mechanics 4. The Nucleus 5. Nuclear Decay and half life o Half life calculations 6. Nuclear Reactions 7. Particle Physics 8. Photo electric effect 9. Energy of a photon 10. Energy levels o Mathematical representations	HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model (quantum theory), and that for some situations one model is more useful than the other. HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Labs: Spectrometer Lab Quark Lab Summative: Test:Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Quizzes:Created using previous years regents questions taken from problem attic/castle learning Formative: Bellringers Homework 	Mid April to Mid May

nucleus.	and graphical	behavior and wave		
Major	representations	interactions with		
Understandings:		matter to transmit		
	11. Quarks	and capture		
5.3a States of	o Determining	information and		
matter and	what subatomic	energy.*		
energy are	particles are made			
restricted to	up of			
discrete values				
(quantized).				
E 2h Charry in				
5.3b Charge is				
quantized on two levels. On the				
atomic				
level, charge is				
restricted to				
multiples				
of the elementary				
charge				
(charge on the				
electron or				
proton). On the				
subnuclear				
level, charge				
appears as				
fractional values of				
the				
elementary charge				
(quarks).				
5.3c On the atomic				
level,				

energy is emitted or absorbed in discrete packets called photons.*			
5.3d The energy of a photon is proportional to its frequency.*			
5.3e On the atomic level, energy and matter exhibit the characteristics of both waves and particles.			
5.3f Among other things, mass-energy and charge are conserved at all levels (from subnuclear to cosmic).			
5.3g The Standard Model of			

Particle Physics has evolved from previous attempts to explain the nature of the atom and states that:				
	Regents Review	School Issued Chromebook Teacher generated google slides notes Calculator School Provided Lab equipment Lab Manual Created by Teacher Physics Reference Table Textbook: Physics Principles & Problems Schoology Castle Learning	 Labs: None Formative: Practice regents exams Practice problems and activities from review book 	Mid May/June

	Regents Review Packet provided by teacher	